Berikutini yang bukan merupakan suku banyak adalah (Sekalian cara ya) - 28800002 asthacandrawati01 asthacandrawati01 19.04.2020 Matematika Sekolah Menengah Atas terjawab Berikut ini yang bukan merupakan suku banyak adalah (Sekalian cara ya) 1 Lihat jawaban Iklan Iklan adamoks22 adamoks22 Jawaban: C. Penjelasan dengan langkah-langkah:
Jakarta - Indonesia dikenal dengan semboyannya yang berbunyi 'Bhinneka Tunggal Ika' karena memiliki keanekaragaman mulai dari suku hingga agama. Ada banyak suku di Indonesia yang masih memegang teguh dengan prinsip adat istiadatnya. Berdasarkan data sensus Badan Pusat Statistik BPS tahun 2010, terdapat suku di Indonesia berdasarkan provinsi yang tersebar dari Sabang hingga Merauke. Sayangnya, hingga berita ini diturunkan jumlah suku di Indonesia 2019 belum diketahui secara pasti. Penasaran apa saja suku di Indonesia dengan lengkap? Yuk, simak berikut ini daftar 10 suku-suku di Indonesia dan asalnya1. Suku JawaSuku terbanyak di Indonesia adalah suku Jawa yang berasal dari provinsi Jawa Tengah, Jawa Timur, Jawa Barat dan Daerah Istimewa Yogyakarta. Suku ini memiliki jumlah sekitar 40% dari total suku bangsa yang ada di Indonesia. Suku Jawa terkenal dengan budaya dan keseniannya yang sebagian besar dipengaruhi oleh agama Hindu-Budha, contohnya pementasan seni Suku SundaSuku sunda merupakan suku terbesar kedua di Indonesia. Banyak yang sudah mengenal suku ini karena permainan musik khasnya yang berbahan baku bambu, yaitu angklung. Faktanya orang Sunda merupakan orang yang pertama kali melakukan hubungan diplomatik dengan bangsa lain, orang tersbeut ialah Sang Hyang Surawisesa atau Raja Samian. Ia melakukan hubungan diplomatik dengan orang Portugis di Malaka pada abad ke-15. Hal itu dibuktikan dalam Prasasti Pernjanjian Sunda-Portugal. 3. Suku Batak Selanjutnya, ada suku Batak yang merupakan sebutan kolektif bagi penduduk dari daerah Tapanuli dan Sumatera Utara. Rupanya ada beberapa bagian dari suku Batak antara lain Suku Batak Toba, Batak Pakpak, Batak Mandailing, Batak Simalungun dan Batak Karo. 4. Suku MaduraBerdasarkan sensus tahun 2010, suku Madura termasuk memiliki populasi besar sekitar jiwa di Indonesia. Suku ini berasal dari daerah Madura dan sekitar provinsi Jawa Timur. Suku ini juga banyak bertransmigrasi ke wilayah lain seperti ke Pulau Kalimantan Tengah dan Barat. 5. Suku BetawiSuku Betawi umumnya bertempat tinggal di wilayah Jakarta karena merupakan keturunan penduduk di Batavia sejak abad ke-17 loh Detikers. Suku ini juga termasuk suku terkenal di antara suku lainnya di Pulau Jawa dan memiliki maskot berupa boneka ondel-ondel. 6. Suku MinangkabauSuku Minangkabau atau biasa dikenal dengan suku Minang karena merujuk pada kultural dan geografis. Suku Minang merupakan pewaris dari tradisi lama Kerajaan Melayu dan Sriwijaya yang senang berdagang. 7. Suku BugisKata Bugis berasal dari kata 'To Ugi' yang berarti orang Bugis. Suku Bugis merupakan sekelompok etnis yang berasal dari wilayah Sulawesi Selatan. Suku ini termasuk ke dalam suku-suku Melayu Deutero yang telah masuk ke wilayah Indoensia setelah terjadinya gelombang migrasi pertama dari daratan Asia. Kini, orang-orang Bugis banyak merantau ke berbagai provinsi di Indonesia hingga mancanegara. 8. Suku MelayuSuku yang dibahas selanjutnya ialah suku Melayu. Suku ini merupakan kelompok etnis dari orang-orang Austronesia yang menghuni semenanjung Malaya hingga Pulau Kalimantan pesisir termasuk Malaysia yang disebut dengan alam Melayu. Nama Melayu berasal dari Kerajaan Melayu yang pernah ada di Sungai Batang Hari, Jambi. Pemakaian Melayu meluas hingga ke luar Sumatera dan terus berkembang hingga ke Pulau Jawa, Kalimanta dan Semenanjung Suku ArabSuku ini merupakan suku yang memiliki darah campuran Arab dan pribumi Indonesia. Awal kedatangannya, mereka tinggal di perkampungan Arab yang tersebar di berbagai kota di Indonesia. Sayangnya, pada masa penjajahan Belanda mereka dianggap sebagai bangsa timur asing bersama dengan suku Tionghoa-Indonesia dan suku India-Indonesia. 10. Suku BantenSuku Banten adalah salah satu suku terbesar selanjutnya yang juga merupakan orang Sunda yang menghuni bekas daerah kekuasaan Kesultanan Banten. Orang Banten pada umumnya menggunakan Bahasa Banten, salah satu dialek Bahasa Sunda yang lebih mengarah ke bahasa Sunda kasar. Simak Video "Liburan Seru, Mengunjungi Indahnya Pemandangan Alam Kawah Putih, Bandung" [GambasVideo 20detik] lus/lus Nah berikut ini adalah 5 Suku Di Papua Yang Terbesar dan Paling Banyak Warganya (Urutan Acak). 1. Suku Asmat Papua. Suku Di Papua yang pertama adalah Suku Asmat. Suku ini Merupakan suku terbesar yang ada di Papua di antara jumlah suku lainnya di daerah yang sama. Suku Asmat ini juga sangat terkenal sebagai suku yang menyukai seni ukir kayu. Ingat kembali konsep mengenai suku banyak sebagai berikut Suku banyak bisa kita sebut juga dengan polinomial, merupakan bentuk aljabar yang terdiri dari variabel, konstanta, dan eksponen pangkat. Bentuk umum suku banyak seperti ini Hal-Hal yang perlu diperhatikan dalam suku banyak yaitu 1. Tidak ada pembagian suku banyak oleh variabel. 2. Eksponen pangkat suku banyak harus bilangan cacah 3. Bukan merupakan suku yang tak terbatas. Oleh karena itu, jawaban B,C dan E bukan merupakan suku banyak karena eksponen pangkat suku banyak bukan bilangan cacah dan jawaban A juga bukan merupakan suku banyak karena tidak ada pembagian suku banyak oleh variabel sehingga jawaban yang tepat ada D, yaitu . Jadi, pilihan jawaban yang tepat adalah D.
Berikutadalah beberapa suku Tionghoa yang ada di Indonesia. Table of Contents. 1. Suku Hokkian; 2. Suku Haninan Suku Tiochiu; 5. Suku Kanton; 1. Suku Hokkian. Suku Hokkian merupakan suku yang berasal dari Fujian yang letaknya di daerah tenggara-selatan Tiongkok. Suku ini banyak berimigrasi di banyak negara, khususnya di Asia Tenggara
Suku banyak atau polinominal merupakan pernyataan matematika yang melibatkan penjumlahan perkalian pangkat dalam satu atau lebih variable dengan koefisien. Bisa dibilang polinominal merupakan bentuk aljabar dengan pangkat peubah bilangan bulat positif. Suku banyak dalam x berderajat n mempunyai bentuk umum Dengan Nilai Suku Banyak Suku banyak dalam x berderajat n dapat ditulis dalam bentuk fungsi sebagai berikut Nilai untuk adalah . Nilainya dapat ditentukan dengan dua strategi, yaitu Substitusi Misalkan nilai untuk dengan dapat ditentukan dengan mensubstitusi menjadi Skema bagan Misalkan untuk . Yang pertama dilakukan adalah mengurutkan penulisan kiri ke kanan mulai dari pangkat tertinggi. Yang ditulis dalam bagan adalah koefisien dari masing-masing derajat suku banyak. Tandaβ€œβ†“β€ menunjukan penjumlahan baris 1 dan baris 2 yang menghasilkan baris hasil. Tanda β€œβ†—β€ menunjukan perkalian baris hasil dengan dan menghasilkan baris 2. Dari cara ini diperoleh . Jika dan berturut-turut adalah suku banyak berderajat m dan n, dengan maka operasinya mempunyai derajat maksimum m mempunyai derajat Pembagian Suku Banyak Misalkan dibagi dengan memberikan hasil bagi dan sisa pembagian S, diperoleh hubungan Untuk mendapat hasil bagi dan sisa S digunakan 2 metode yaitu Pembagian Bersusun Pembagian dengan cara bersusun biasa sebagai berikut Pembagian Sintetik Horner Pembagian dengan cara ini menggunakan bagan seperti berikut Berdasarkan kedua penyelesaian tersebut, didapat hasil pembagian dan sisa pembagian . Pembagian dengan Misalkan , sehingga bentuk menjadi . Jika suku banyak dibagi dengan memberikan hasil dan sisa S, maka terdapat hubungan Dengan demikian dibagi dengan memberikan hasil bagi dan sisa S. Koefisien-koefisien dan S ditentukan dengan dua jenis cara pembagian sebelumnya dengan mengganti . Pembagian dengan Pembagian suku banyak oleh pembagi dalam bentuk yang tidak bisa difaktorkan, dapat dilakukan dengan metode pembagian bersusun. Sedangkan jika pembagi dapat difaktorkan, penyelesaian dapat dilakukan dengan metode horner. Bentuk umum pembagian ini Misalkan dapat difaktorkan menjadi dan sehingga , maka Langkah-langkah penyelesaiannya adalah Melakukan pembagian suku banyak oleh dengan hasil dan sisanya . Kemudian melakukan pembagian oleh dengan hasil dan sisanya . Hasil bagi oleh adalah sedangkan sisanya . Ingat jika atau membentuk , perlu untuk membagi atau dengan a untuk mendapatkan hasil baginya. Teorema Sisa Misalkan dibagi dengan hasil bagi dan sisa , maka diperoleh hubungan Jika berderajat n dan pembagi berderajat m, dengan , maka Teorema untuk sisa adalah Jika berderajat n dibagi dengan maka sisanya . Sisa adalah nilai suku banyak untuk . Jika berderajat n dibagi dengan maka sisanya . Sisa adalah nilai untuk . Pembagi berderajat yang dapat difaktorkan maka sisanya berderajat . Contoh, polinominal dibagi dengan memiliki sisa S berikut Teorema Faktor Misalkan adalah sebuah suku banyak dengan adalah faktornya jika dan hanya jika . Teorema faktor dapat dibaca sebagai berikut Contoh, menentukan faktor-faktor dari . Konstanta memiliki faktor-faktor yang terdiri dari . Dengan metode bagan di atas atau metode substitusi bisa diketahui nilai agar . faktor bukan faktor faktor faktor Sehingga faktor-faktornya adalah , , dan . Akar-akar Persamaan Suku Banyak adalah faktor dari jika dan hanya jika k adalah akar dari persamaan . Jika dengan pβ‰ 0 adalah nilai nol dari fx maka p adalah pembagi . Jika memiliki akar pecahan murni dengan , maka p adalah pembagi dan q adalah pembagi . Sifat-sifat akar suku banyak 1. Persamaan kuadrat Jika dan adalah akar persamaan , maka 2. Persamaan pangkat tiga Jika dan adalah akar persamaan , maka 3. Persamaan pangkat empat Jika dan adalah akar persamaan , maka Contoh Soal Suku Banyak dan Pembahasan Contoh Soal 1 Teorema Sisa Suku banyak dan dibagi dengan masing-masing menghasilkan sisa yang sama. Tentukan nilai a. Pembahasan Contoh Soal 2 Teorema Faktor Tentukan nilai a dan b jika habis dibagi . Pembahasan Disubstitusi kedalam menjadi ……………1 ……………2 Dari persamaan 1 dan 2 diperoleh Contoh Soal 3 Akar-akar Persamaan Suku Banyak Diberikan persamaan dengan akar-akarnya dan . Jika . Carilah nilai p dan akar-akarnya. Pembahasan Maka Kemudian disubstitusi dalam persamaan suku banyak Kemudian persamaan menjadi Jika dibagi menjadi Sehingga Kontributor Alwin Mulyanto, Alumni Teknik Sipil FT UI Materi lainnya Peluang Matematika Trigonometri Logaritma
Jadipolinomial atau yang juga biasa disebut dengan ' suku banyak ' merupakan sebuah sistem persamaan yang mengandung koefisien dan variabel dalam beberapa suku-yang sesuai namanya, ada banyak, bisa sampe lebih dari dua suku. Dalam materi polinomial, operasi matematika yang dipake cuma penjumlahan, pengurangan, perkalian, dan perpangkatan.
Suku banyak atau polinomial adalah salah satu materi matematika tingkat SMA yang merupakan bagian besar dari ruang lingkup aljabar. Suku banyak adalah ekspresi aljabar yang berbentuk $$\boxed{a_nx^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0}$$untuk $n$ bilangan cacah, $a_1,a_2,\cdots a_n$ adalah koefisien masing-masing variabel, serta $a_0$ suatu konstanta dengan syarat $a_n \neq 0.$ Contoh suku banyak $7x^4 + 3x^3 -10x^2 -9$ $x^{99} + x^{45} -\sqrt{3}x-10$ $x^{3} -\dfrac87x^2-12$ Bukan suku banyak $\sqrt{2}x^3 + \dfrac{1}{x} -4$ $\sqrt{2x^3} + x -10$ $x^{-1}+x^{-2}+x^{-3}-12$ Untuk menambah pemahaman tentang materi ini, berikut penulis sajikan sejumlah soal beserta pembahasannya yang dikumpulkan dari berbagai sumber. Semoga bermanfaat. Unduh soal dengan klik tautanDownload PDF, 173 KB. Quote by Robert T. Kiyosaki In school we learn that mistakes are bad and we are punished for making them. Yet, if you look at the way humans are designed to learn, we learn by making mistakes. We learn to walk by falling down. If we never fell down, we would never walk. Bagian Pilihan Ganda Soal Nomor 1 Berikut ini yang bukan merupakan bentuk suku banyak adalah $\cdots \cdot$ A. $t^4\sqrt[3]{t^6}-2t^2+1$ B. $t^{30}-\sqrt2t^{21}+\dfrac15$ C. $\sin 2t^2+4t-7 + 3t$ D. $t^2 + 2t^4 + 8t^6-\sqrt{5}$ E. $\sin 30^{\circ}~t^{10} + \cos 30^{\circ}~t^5-\tan 30^{\circ}$ Pembahasan Berdasarkan definisi, suatu ekspresi berbentuk $$\boxed{a_0x^n + a_1x^{n-1}+a_2x^{n-2}$ $+\cdots+a_{n-1}x + a_n}$$ dengan $n$ bilangan bulat positif, disebut suku banyak polinomial satu variabel. Cek opsi A Perhatikan bahwa $\sqrt[3]{t^6} = t^2$ sehingga ekspresi yang diberikan sama dengan $t^6-2t^2+1$ dan jelas ini merupakan suku banyak. Cek opsi B Jelas suku banyak karena berbentuk seperti definisi. Perhatikan bahwa koefisien tidak harus bernilai bulat. Cek opsi C Bukan suku banyak karena ada ekspresi trigonometri $\sin 2t^2+4t-7$ dengan $t$ adalah variabel. Cek opsi D Jelas suku banyak karena berbentuk seperti definisi. Cek opsi E Koefisien dari setiap suku dinyatakan dalam bentuk trigonometri yang nilainya sudah jelas misalnya $\sin 30^{\circ} = 1/2$, sedangkan variabelnya berpangkat bulat positif. Karena sesuai definisi, ekspresi tersebut tergolong suku banyak. Jawaban C [collapse] Soal Nomor 2 Jika $Px = x^6 -x^3 + 2$ dibagi oleh $x^2-1$, maka sisa pembagiannya adalah $\cdots \cdot$ A. $-x+4$ D. $-x-2$ B. $-x+3$ E. $-x-3$ C. $-x+2$ Pembahasan Diketahui $Px = x^6 -x^3 + 2$ Pembagi $Dx = x^2 -1 = x+1x-1$ Dalam hal ini, dapat ditulis $$x^6 -x^3 + 2 = x+1x-1Hx + Sx$$Karena pembagi divisor berbentuk polinomial berderajat dua, maka sisa hasil baginya berupa polinomial berderajat satu, yaitu $Sx = ax + b$ sehingga $$x^6 – x^3 + 2 = x+1x-1Hx + ax + b$$Substitusi $x=-1$, diperoleh $$\begin{aligned} -1^6 -1^3 + 2 & = 0 + a-1 + b \\ -a + b & = 4 && \cdots 1 \end{aligned}$$Substitusi $x=1$, diperoleh $$\begin{aligned} 1^6 -1^3 + 2 & = 0 + a1 + b \\ a + b & = 2 && \cdots 2 \end{aligned}$$Diperoleh SPLDV $\begin{cases} -a+b=4 \\ a+b=2 \end{cases}$ Selesaikan sistem sehingga diperoleh $a=-1$ dan $b=3$. Jadi, sisa hasil baginya adalah $\boxed{Sx = ax + b = -x + 3}$ Jawaban B [collapse] Soal Nomor 3 Jika faktor-faktor $fx = 3x^3-5x^2$ $+px+q$ adalah $x+1$ dan $x-3$, maka nilai $p$ dan $q$ berturut-turut adalah $\cdots \cdot$ A. $-11$ dan $-3$ B. $-11$ dan $3$ C. $11$ dan $-19$ D. $11$ dan $19$ E. $11$ dan $3$ Pembahasan Diketahui $fx = 3x^3-5x^2+px+q$ memiliki faktor $x+1$ dan $x-3.$ Pembuat nol pembagi $x = -1.$ Dengan menggunakan metode Horner, diperoleh $$\begin{array}{ccccc} & 3 & -5 & p & q \\ -1 & \downarrow & -3 & 8 & -p-8 \\\hline & 3 & -8 & p+8 & q-p-8 \end{array}$$Karena $x+1$ merupakan faktor dari $fx$, berdasarkan teorema faktor, diperoleh $q-p-8=0 \Leftrightarrow q-p=8.$ Pembuat nol pembagi $x = 3.$ Dengan menggunakan metode Horner, diperoleh $$\begin{array}{ccccc} & 3 & -5 & p & q \\ 3 & \downarrow & 9 & 12 & 3p+36 \\\hline & 3 & 4 & p+12 & q+3p+36 \end{array}$$Karena $x-3$ juga merupakan faktor dari $fx,$ berdasarkan teorema faktor, diperoleh $q+3p+36=0 \Leftrightarrow q+3p=-36.$ Jadi, diperoleh SPLDV$\begin{cases} q-p = 8 \\ q+3p = -36 \end{cases}$ Penyelesaian sistem di atas adalah $p = -11$ dan $q = -3.$ Jadi, nilai dari $\boxed{p=-11; q = -3}$ Jawaban A [collapse] Soal Nomor 4 Diketahui dua polinom, yaitu $x^3-4x^2+5x+a$ dan $x^2+3x-2$. Jika kedua polinom ini dibagi dengan $x+1$ sehingga sisa hasil baginya sama, maka nilai $a = \cdots \cdot$ A. $-2$ C. $2$ E. $9$ B. $1$ D. $6$ Pembahasan Misalkan $\begin{aligned} Px & = x^3-4x^2+5x+a \\ Qx & = x^2+3x-2 \end{aligned}$ dengan pembagi $Dx = x +1.$ Pembuat nol pembagi $x = -1.$ Dengan menggunakan metode Horner, untuk polinom $Px$ diperoleh $\begin{array}{ccccc} & 1 & -4 & 5 & a \\ -1 & \downarrow & -1 & 5 & -10 \\ \hline & 1 & -5 & 10 & a-10 \end{array}$ Untuk polinom $Qx$ diperoleh $\begin{array}{cccc} & 1 & 3 & -2 \\ -1 & \downarrow & -1 & -2 \\ \hline & 1 & 2 & -4 \end{array}$ Karena sisa hasil baginya sama, didapat $a – 10 = -4 \Leftrightarrow a = -4+10=6.$ Jadi, nilai $\boxed{a=6}$ Jawaban D [collapse] Soal Nomor 5 Diketahui $x-2$ adalah faktor $fx = 2x^3+ax^2+bx-2$. Jika $fx$ dibagi $x+3$, maka sisa hasil pembagiannya adalah $-50$. Nilai $a+b = \cdots \cdot$ A. $10$ D. $-11$ B. $4$ E. $-13$ C. $-6$ Pembahasan Diketahui $fx = 2x^3+ax^2+bx-2$ memiliki faktor $x-2$ Pembuat nol pembagi $x = 2.$ Dengan menggunakan metode Horner, diperoleh $$\begin{array}{ccccc} & 2 & a & b & -2 \\ 2 & \downarrow & 4 & 2a+8 & 4a+2b+16 \\ \hline & 2 & a+4 & 2a+b+8 & 4a+2b+14 \end{array}$$Karena $x-2$ merupakan faktor $fx$, haruslah $4a+2b+14=0 \Leftrightarrow 2a+b=-7.$ Diketahui $fx$ dibagi $x+3$ memiliki sisa hasil bagi $-50$. Pembuat nol pembagi $x = -3.$ Dengan menggunakan metode Horner, diperoleh $$\begin{array}{ccccc} & 2 & a & b & -2 \\ -3 & \downarrow & -6 & -3a+18 & 9a-3b-54 \\ \hline & 2 & a-6 & -3a+b+18 & 9a-3b-56 \end{array}$$Karena bersisa $-50$, diperoleh $9a-3b-56=-50 \Leftrightarrow 3a-b=2$ Diperoleh SPLDV $\begin{cases} 2a+b=-7 \\ 3a-b=2 \end{cases}$ Penyelesaian dari sistem di atas adalah $a=-1$ dan $b=-5$. Dengan demikian, nilai dari $\boxed{a+b=-1+-5=-6}$ Jawaban C [collapse] Soal Nomor 6 $fx$ adalah suku banyak berderajat tiga. $x^2+x-12$ adalah faktor dari $fx$. Jika $fx$ dibagi oleh $x^2+x-6$ bersisa $-6x+6$, maka suku banyak tersebut adalah $\cdots \cdot$ A. $x^3-2x^2+13x+12$ B. $x^3+x^2-13x+12$ C. $x^3-13x+12$ D. $x^3-13x^2-12$ E. $x^3-2x^2+6$ Pembahasan Diketahui bahwa $$\begin{aligned} fx & = x^2 + x -2H_1x && \cdots 1 \\ fx & = x^2 + x – 6H_2x + -6x + 6 && \cdots 2 \end{aligned}$$Catatan Karena $x^2+x-2$ merupakan faktor dari $fx$, maka sisa hasil baginya adalah $0$. Pada persamaan $2$, bentuk $x^2 + x -6$ dapat difaktorkan menjadi $x + 3x-2$ sehingga dapat ditulis $$fx = x+3x-2H_2x + -6x + 6.$$Substitusi $x = -3$ menghasilkan $f-3 = 0 + -6-3 + 6 = 24.$ Substitusi $x = 2$ menghasilkan $f2 = 0 + -62 + 6 = -6.$ Misalkan hasil bagi $fx$ oleh $x^2+x-12$ adalah $H_1x = ax + b$ sehingga dapat ditulis $fx = x^2 + x -2ax + b.$ Substitusi $x = -3$, diperoleh $$\begin{aligned} f-3 & = -3^2 + -3 -12-3a + b \\ 24 & = -6-3a + b \\ -3a + b & = -4 \end{aligned}$$Substitusi $x = 2$, diperoleh $\begin{aligned} f2 & = 2^2 + 2 -122a + b \\ -6 & = -62a + b \\ 2a + b & = 1 \end{aligned}$ Diperoleh SPLDV $\begin{cases} -3a + b = -4 \\ 2a + b = 1 \end{cases}$ Penyelesaian dari sistem di atas adalah $a = 1$ dan $b = -1$. Dengan demikian, $\begin{aligned} fx &= x^2 + x -12x -1 \\ & = x^3 -13x + 12 \end{aligned}$ Jadi, suku banyak tersebut adalah $\boxed{x^3-13x+12}$ Jawaban C [collapse] Soal Nomor 7 Diketahui $x-2$ dan $x-1$ adalah faktor-faktor suku banyak $x^3+ax^2-13x+b$. Jika $x_1, x_2$, dan $x_3$ adalah akar-akar suku banyak tersebut, maka nilai dari $x_1x_2x_3 = \cdots \cdot$ A. $-10$ C. $10$ E. $20$ B. $8$ D. $12$ Pembahasan Karena $x-2$ dan $x-1$ adalah faktor-faktor suku banyak $x^3+ax^2-13x+b$, dapat ditulis $$x^3 + ax^2 -13x + b = x-2x-1Hx$$dengan $Hx$ sebagai hasil baginya. Dengan menggunakan metode Horner dua tingkat dengan pembuat nol pembagi $x = 2$ dan $x=1$, diperoleh $\begin{array}{ccccc} & 1 & a & -13 & b \\ 2 & \downarrow & 2 & 2a+4 & 4a-18 \\ \hline & 1 & a+2 & 2a-9 & \color{red}{4a+b-18} \\ 1 & \downarrow & 1 & a + 3 \\ \hline & 1 & a+3 & 3a-6 \end{array}$ Dari tahap II Skema Horner di atas, diperoleh $3a -6 = 0$ sehingga $a = \dfrac{6}{3} = 2$. Dari tahap I Skema Horner di atas, diperoleh $4a + b -18 = 0$. Substitusi $a = 2$, diperoleh $42 + b – 18 = 0 \Leftrightarrow b = 10.$ Dari baris terakhir Skema Horner, diperoleh hasil baginya adalah $\begin{aligned} Hx & = 1x + a + 3 \\ & = x + 2 + 3 = x + 5 \end{aligned}$ Dengan demikian, suku banyak itu adalah $x-2x-1x+5$ dengan akar-akarnya adalah $x_1 = 2; x_2 = 1; x_3 = -5$ sehingga $\boxed{x_1x_2x_3=21-5 = -10}$ Jawaban A [collapse] Soal Nomor 8 Salah satu akar persamaan suku banyak $3x^3 + ax^2 -61x + 20$ adalah $4$. Jumlah akar-akar yang lain dari persamaan tersebut adalah $\cdots \cdot$ A. $-7$ C. $-\dfrac{14}{3}$ E. $2$ B. $-2$ D. $\dfrac{14}{3}$ Pembahasan Karena salah satu akar suku banyaknya adalah $4$, dapat ditulis $3x^3 + ax^2 -61x + 20 = x-4Hx$ dengan $Hx$ sebagai hasil baginya. Dengan menggunakan metode Horner dengan pembuat nol pembagi $x=4$, diperoleh $\begin{array}{ccccc} & 3 & a & -61 & 20 \\ 4 & \downarrow & 12 & 4a+48 & 16a-52 \\ \hline &3 & a+12 & 4a-13 & 16a -32 \end{array}$ Diperoleh $16a -32 = 0 \Leftrightarrow a = \dfrac{32}{16} = 2.$ dengan hasil baginya $Hx = 3x^2+a+12x+4a-13.$ Substitusi $a=2$, diperoleh $Hx = 3x^2+14x-5.$ Dengan demikian, suku banyaknya dapat ditulis $\begin{aligned} & 3x^3 + 2x^2 -61x + 20 \\ & = x-43x^2+14x-5 \\ & = x-43x-1x+5 \end{aligned}$ Diperoleh dua akar yang lain, yaitu $x = \dfrac13$ dan $x = -5.$ Jumlah akarnya adalah $\boxed{\dfrac13 + -5 = -\dfrac{14}{3}}$ Jawaban C [collapse] Soal Nomor 9 Suku banyak $fx = 2x^3-px^2-28x+15$ habis dibagi oleh $x-5$. Salah satu faktor linear lainnya adalah $\cdots \cdot$ A. $x-3$ D. $2x+1$ B. $x+2$ E. $3x-1$ C. $2x-1$ Pembahasan Diketahui $fx = 2x^3-px^2-28x+15$ memiliki faktor $x-5.$ Pembuat nol pembagi $x = 5.$ $$\begin{array}{ccccc} & 2 & -p & -28 & 15 \\ 5 & \downarrow & 10 & -5p+50 & -25p+110 \\ \hline & 2 & -p+10 & -5p+22 & -25p+125 \end{array}$$Dengan demikian, diperoleh $-25p+125=0 \Leftrightarrow p = \dfrac{0-125}{-25} = 5$ Hasil baginya adalah $$Hx = 2x^2+-p+10x+-5p+22$$Substitusi $p=5$, diperoleh $$Hx = 2x^2+5x-3 = 2x-1x+3$$Oleh karena itu, suku banyak tersebut dapat ditulis menjadi $\begin{aligned} fx & = 2x^3 -5x^2 -28x + 15 \\ & = 2x-1x+3x-5 \end{aligned}$ Jadi, faktor linear lainnya dari $fx$ adalah $2x-1$ dan $x+3.$ Jawaban C [collapse] Soal Nomor 10 Salah satu faktor suku banyak $Px=x^4-15x^2-10x+n$ adalah $x+2$. Faktor lainnya adalah $\cdots \cdot$ A. $x-4$ D. $x-6$ B. $x+4$ E. $x-8$ C. $x+6$ Pembahasan Diketahui $Px=x^4+0x^3-15x^2-10x+n$ memiliki faktor $x+2.$ Pembuat nol pembagi $x = -2.$ $\begin{array}{cccccc} & 1 & 0 & -15 & -10 & n \\ -2 & \downarrow & -2 & 4 & 22 & -24 \\ \hline & 1 & -2 & -11 & 12 & n-24 \end{array}$ Dengan demikian, diperoleh $n-24=0 \Leftrightarrow n = 24.$ Hasil baginya adalah $Hx = x^3 -2x^2 -11x + 12.$ Perhatikan bahwa konstanta $12$ memiliki faktor bulat, yaitu $\pm 1, \pm 2, \pm 4, \pm 6$, dan $\pm 12$. Beberapa dari bilangan tersebut akan menjadi faktor dari $Hx$. Substitusi $x=4$ pada $Hx$, diperoleh $\begin{aligned} H4 & = 4^3 -24^2 -114 + 12 \\ & = 64 -32 -44 + 12 = 0 \end{aligned}$ Karena $H4 = 0$, haruslah $x-4$ merupakan salah satu faktor dari $Hx$ sehingga sekarang dapat ditulis $\begin{aligned} Px & = x^3-2x^2-11x+12x+2 \\ & = x^2+2x-3x-4x+2 \\ & = x+3x-1x-4x+2 \end{aligned}$ Jadi, faktor lainnya dari $Px$ adalah $x-4$ sesuai dengan alternatif pilihan yang diberikan. Jawaban A [collapse] Soal Nomor 11 Diketahui $fx$ jika dibagi $x-2$ bersisa $13,$ sedangkan jika dibagi dengan $x+1$ bersisa $-14.$ Sisa pembagian $fx$ oleh $x^2-x-2$ adalah $\cdots \cdot$ A. $-9x-7$ D. $9x+5$ B. $9x-5$ E. $-9x-5$ C. $-9x+5$ Pembahasan Diketahui $fx$ dibagi $x-2$ bersisa $13$; $fx$ dibagi $x+1$ bersisa $-14$. Untuk itu, dapat ditulis $\begin{cases} fx = x-2H_1x + 13 \\ fx = x+1H_2x -14 \end{cases}$ Substitusi $x = 2$ dan $x = -1$ berturut-turut pada persamaan pertama dan kedua, diperoleh $\begin{cases} f2 & = 13\\ f-1 & = -14 \end{cases}$ Misalkan sisa hasil bagi $fx$ oleh $x^2-x-2$ adalah $ax+b$, yang satu derajat kurang dari pembaginya sehingga $\begin{aligned} fx & = x^2-x-2Hx + ax + b \\ & = x-2x+1Hx + ax + b \end{aligned}$ Substitusi $x = 2$ dan $x = -1$ berturut-turut pada persamaan di atas sehingga diperoleh $\begin{cases} f2 & = 2a + b = 13 \\ f-1 & = -a + b = -14 \end{cases}$ Selesaikan SPLDV di atas untuk memperoleh $a = 9$ dan $b=-5.$ Dengan demikian, sisa hasil baginya adalah $\boxed{Sx = ax + b = 9x -5}$ Jawaban B [collapse] Soal Nomor 12 Suatu suku banyak berderajat 3 jika dibagi $x^2-x-12$ bersisa $6x-2$ dan jika dibagi $x^2+2x+2$ bersisa $3x+4$. Suku banyak itu adalah $\cdots \cdot$ A. $\dfrac{6}{13}x^3 -\dfrac{9}{13}x^2 + \dfrac{9}{13}x + \dfrac{10}{13}$ B. $\dfrac{6}{13}x^3 + \dfrac{9}{13}x^2 + \dfrac{9}{13}x + \dfrac{10}{13}$ C. $\dfrac{6}{13}x^3 -\dfrac{9}{13}x^2 -\dfrac{9}{13}x + \dfrac{10}{13}$ D. $\dfrac{6}{13}x^3 -\dfrac{9}{13}x^2 + \dfrac{9}{13}x -\dfrac{10}{13}$ E. $\dfrac{6}{13}x^3 + \dfrac{9}{13}x^2 -\dfrac{9}{13}x -\dfrac{10}{13}$ Pembahasan Karena $fx$ merupakan polinomial berderajat $3$, hasil baginya ketika dibagi oleh $x^2-x-12$ pasti dalam bentuk linear. Ini juga sama ketika $fx$ dibagi oleh $x^2+2x+2$. Untuk itu, dapat ditulis $$\begin{cases} fx = x^2-x-12ax+b+6x-2 & \cdots 1 \\ fx = x^2+2x+2cx+d + 3x + 4 & \cdots 2 \end{cases}$$Faktorkan pembagi pada persamaan pertama sehingga $$\begin{cases} fx = x-4x+3ax+b+6x-2 & \cdots 1 \\ fx = x^2+2x+2cx+d + 3x + 4 & \cdots 2 \end{cases}$$Substitusi $x = 4$ dan $x = -3$ berturut-turut pada persamaan pertama sehingga diperoleh $\begin{cases} f4 = 64 -2 = 22 \\ f-3 = 6-3 -2 = -20 \end{cases}$ Sekarang, substitusi $x=4$ pada persamaan kedua. $$\begin{aligned} fx & = x^2+2x+2cx+d + 3x + 4 \\ f4 & = 4^2+24+24c+d + 34+4 \\ 22 & = 264c+d + 16 \\ 6 & = 264c+d \\ 3 & = 134c +d \\ 52c + 13d & = 3 \end{aligned}$$Substitusi $x = -3$ menghasilkan $$\begin{aligned} fx & = x^2+2x+2cx+d + 3x + 4 \\ f-3 & = -3^2+2-3+2-3c+d + 3-3+4 \\ -20 & = 5-3c+d -5 \\ -15 & = 5-3c+d \\ -3c + d & = -3 \end{aligned}$$ Diperoleh SPLDV $\begin{cases} 52c+ 13d = 3 & \cdots 1 \\ -3c +d = -3 & \cdots 2 \end{cases}$ Dengan menggunakan metode eliminasi, diperoleh $$\begin{aligned} \! \begin{aligned} 52c + 13d & = 3 \\ -3c+d & = -3 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 13 \end{aligned} \right & \! \begin{aligned} 52c+13d & = 3 \\ -39c + 13d & = -39 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 91c & = 42 \\ c & = \dfrac{42}{91} = \dfrac{6}{13} \end{aligned} \end{aligned}$$Substitusikan $c = \dfrac{6}{13}$ ke salah satu persamaan, misalkan pada persamaan kedua. $\begin{aligned} -3c + d & = -3 \\ -3\left\dfrac{6}{13}\right + d & = -3 \\ d & = -3 + \dfrac{18}{13} = -\dfrac{21}{13} \end{aligned}$ Dengan demikian, sekarang dapat ditulis $$\begin{aligned} fx & = x^2+2x+2\left\dfrac{6}{13}x-\dfrac{21}{13}\right + 3x + 4 \\ & = \dfrac{6}{13}x^3 – \dfrac{9}{13}x^2 + \dfrac{9}{13}x + \dfrac{10}{13} \end{aligned}$$Jadi, suku banyak $fx$ adalah $\boxed{\dfrac{6}{13}x^3 -\dfrac{9}{13}x^2 + \dfrac{9}{13}x + \dfrac{10}{13}}$ Jawaban A [collapse] Soal Nomor 13 Diketahui $x+2$ dan $x+1$ adalah faktor-faktor dari suku banyak $fx=2x^4+tx^3$ $-9x^2+nx+4$. Jika akar-akar persamaan suku banyak tersebut adalah $x_1,x_2,x_3$, dan $x_4$ untuk $x_1 Perbedaanini ditandai dengan munculnya etnosentrisme, di mana seseorang akan menganggap ingroup-nya sebagai patokan kebenaran dan menganggap semua orang yang berbeda merupakan outgroup-nya. (E) etnosentrisme. 56. Berikut ini yang merupakan kelompok sosial yang terbentuk karena faktor genealogis adalah .
Polinomial atau yang biasa disebut juga sebagai Suku banyak adalah sebuah bentuk dari suku-suku dengan nilai banyak yang disusun dari perubah variabel serta konstanta. Operasi yang dipakai hanya penjumlahan, pengurangan, perkalian serta pangkat bilangan bulat tidak bentuk umum dari Polinomial ini, yaituBentuk Umum Polinomial an xn + an-1 xn-1 + . . . + a1 x + aKeteranganDengan an , an-1 , …. , a1 , a0 € R koefisien atau konstantaPolinom an β‰  0 , serta n adalah bilangan bulat tertinggi dari x merupakan derajat polinomial. Sementara suku yang tidak mengandung variable a disebut sebagai suku tetap konstan.Suatu polinomial dapat terlihat seperti berikut 25x2 + 19x – 06Contoh lain dari bentuk polinomial yaitu3xx – 2-6y2 – Β½x3xyz + 3xy2z – – 200y + 99w55 Konstanta adalah koefisien yang variabelnya memiliki pangkat 0, sehingga angka adalah polinomial.Suatu polinomial dapat mempunyaiVariabel adalah nilai yang bisa berubah, seperti x, y, z dalam suatu persamaan; boleh mempunyai lebih dari 1 variabelKoefisien adalah konstanta yang mendampingi variabelKonstanta suatu nilai tetap serta tidak berubahEksponen atau pangkat adalah pangkat dari variabel; bisa juga disebut sebagai derajat dari suatu PolinomialPolinomial dan Bukan PolinomialNilai PolinomialPembagian PolinomialPenjumlahan, Pengurangan dan Perkalian PolinomialTeoremaTeorema SisaTeorema FaktorSifat Akar Akar Suku BanyakPembagian IstimewaContoh Soal dan PembahasanTerdapat juga beberapa syarat sehingga sebuah persamaan bisa disebut sebagai polinomial’, diantaranya ialah sebagai berikutVariabel tidak boleh mempunyai pangkat pecahan atau tidak boleh masuk dalam sebuah persamaan dan Bukan PolinomialBerikut adalah beberapa bentuk yang tidak termasuk ke dalam bentuk polinomial, diantaranya ialah sebagai berikut3xy-2 sebab pangkatnya negatif. Eksponen atau pangkat hanya boleh {0,1,2…}.2/x+2 sebab membagi dengan variabel tidak diperkenankan pangkat penyebut yaitu negatif.1/x sebab alasan yang sama ^.√x sebab akar merupakan pangkat pecahan, yang tidak cos x sebab terdapat variabel x dalam fungsi trigonometriBerikut adalah hal yang diperbolehkan atau termasuk dalam bentuk polinomial, perhatikan baik-baikNilai PolinomialNilai polinomial fx untuk x=k atau fk dapat kita cari dengan menggunakan metode substitusi atau dengan skema Horner. Berikut rinciannyaCara subtitusi Dengan mensubtitusikan x = k ke dalam polinomial, sehingga akan menjadifx = an kn + an-1 kn-1 + . . . + a1 k + aCara skema horner Sebagai contoh fk = x3 + bx2 + cx + d sehingga fk = ak3 + bk2 + ck + d xa3 + bx2 + cx + d = ak2 + bk + ck+d = ak + bk + ck+dPembagian PolinomialSecara umum, pembagian dalam polinomial dapat dituliskan seperti di bawah iniRumus fx = gx hx + sxKeteranganfx merupakan suku banyak yang merupakan suku banyak merupakan suku banyak hasil x merupakan suku banyak Polinomial Dengan Cara HornerPembagian suku banyak atau polinomial fx oleh x-k bisa kita lakukan dengan menggunakan cara atau metode ini bisa kita pakai untuk pembagi berderajat 1 atau pembagi yang bisa difaktorkan menjadi pembagi-pembagi berderajat ialah seabgai berikutTulis koefisiennya saja β†’ harus runtut atau urut mulai dari koefisien xn, xn – 1, … sampai konstanta apabila terdapat variabel yang tidak ada, maka koefisiennya ditulis 0Sebagai contoh untuk 4x3 – 1, koefisien-koefisiennya yaitu 4, 0, 0, dan -1 untuk x3, x2, x, dan konstantaApabila koefisien derajat tertinggi Px β‰  1, maka hasil baginya harus kita bagi kembali dengan koefisien derajat tertinggi Px.Apabila pembagi bisa kita difaktorkan, makaApabila pembagi bisa difaktorkan menjadi P1 serta P2, maka Sx = + S1Apabila pembagi bisa difaktorkan menjadi P1, P2, P3, maka Sx = + + S1Apabila pembagi dapat difaktorkan menjadi P1, P2, P3, P4, maka Sx = + + + S1dan begitu juga soal menggunakan cara hornerSoal = 2x3 – 3x2 + x + 5 dibagi dengan Px = 2x2 – x – 1JawabPx = 2x2 – x – 1 = 2x + 1x – 1P1 2x + 1 = 0 β†’ x = –½P2 x – 1 = 0 β†’ x = 1Cara HornernyaHx = – 1 = x – 1Sx = + S1 = 2x + 1.1/2 + 7/2 = x + Β½ + 7/2 = x + 4Koefisien Tak TentuFx = Px.Hx + SxUntuk contoh soal di atas soal no 1 pada cara horner, sebab Fx berderajat 3 serta Px berderajat 2, maka dari ituHx berderajat 3 – 2 = 1Sx berderajat 2 – 1 = 1Sehingga, misalnya Hx = ax + b dan Sx = cx + dMaka2x3 – 3x2 + x + 5 = 2x2 – x – 1.ax + b + cx + dRuas kanan menjadi= 2ax3 + 2bx2 – ax2 – bx – ax – b + cx + d= 2ax3 + 2b – ax2 + –b – a + cx + –b + dSamakan koefisien ruas kiri dan juga ruas kanan, sehingga menjadix3 β†’ 2 = 2a β†’ a = 2/2 = 1x2 β†’ –3 = 2b – a β†’ 2b = –3 + a = –3 + 1 = –2 β†’ b = –2/2 = –1x β†’ 1 = –b – a + c β†’ c = 1 + b + a = 1 – 1 + 1 β†’ c = 1Konstanta β†’ 5 = –b + d β†’ d = 5 + b = 5 – 1 β†’ d = 4Sehingga hasil akhirnya adalahHx = ax + b = – 1 = x – 1Sx = cx + d = + 4 = x + 4Rumus patokan yang harus kalian ketahui adalahDerajat Hx = Derajat Fx – Derajat PxDerajat Sx = Derajat Px – 1Penjumlahan, Pengurangan dan Perkalian PolinomialBerikut ini akan kami berikan contoh soal polinomial pada opersai penjumlahan, pengurangan, dan juga pengurangan. Perhatikan baik-baik ya!!Contoh soalDiketahui suku banyak fx serta gx adalah sebagai berikutfx = 2x3 – x2 + 5x – 10gx = 3x2 – 2x + 8Maka tentukanlaha fx + gxb fx – gxc fx x gxJawaba fx + gx = 2x3 – x2 + 5x – 10 + 3x2 – 2x + 8 = 2x3 – x2 + 3x2 + 5x – 2x – 10 + 8 = 2x3 + 2x2 + 3x – 2b fx – gx = 2x3 – x2 + 5x – 10 – 3x2 – 2x + 8 = 2x3 – x2 – 3x2 + 5x + 2x – 10 – 8 = 2x3 – 4x2 + 7x – 18c fx x gx = 2x3 – x2 + 5x – 10 Γ— 3x2 – 2x + 8 = 2x33x2 – 2x + 8 – x23x2 – 2x + 8 + 5x3x2 – 2x + 8 – 103x2 – 2x + 8 = 2x5 – 4x4 + 16x3 – 3x4 + 2x3 – 8x2 + 15x3 – 10x2 + 40x – 30x2 + 20x – 80 = 2x5 – 7x4 + 33x3 – 48x2 + 60x – 80Bagaimana? Mudah bukan?TeoremaTeorema ini digunakan untuk menentukan akar persamaan dari pangkat lebih dari dua. Teorema terbagi menjadi dua macam, yakni teorema sisa dan teorema faktor. Berikut SisaMisalnya fx dibagi dengan px dengan hasil bagi hx serta sisa hx, maka akan kita dapatkan hubunganfx = Px x Hx x SxApabila fx berderajat n serta Px pembagi berderajat m, dengan m ≀ n , makaHx berderajat n – mSx berderajat maksimum m – 1Teorema untuk sisa ialah sebagai berikutApabila fx berderajat n dibagi dengan x -k maka sisanya adaah S = fk. Sisa dari fk yaitu nilai suku banyak untuk x = fx berderajat n dibagi dengan ax + b maka sisanya adalah S = f -b/a. Sisa dari f -b/a merupakan nilai untuk x = -b/ berderajat m β‰₯ 2 yang bisa difaktorkan maka sisa berderajatnya adalah m – 1.Adapun rumus sisa yang biasa digunakan, yaitusx = mx + nUntuk lebih memahami uraian di atas, berikut akan kami berikan contoh soalnyaCohtoh soalSoal suku banyak apabila dibagi oleh x + 2 bersisa -13 serta apabila dibagi x – 3 sisanya 7. Tentukan sisanya apabila suku banyak tersebut dibagi x2 – x – 6!JawabCara 1Rumus Sisa yaitu sx = mx + n, sehinggakx = x2 – x – 6 kx = x + 2 x – 3Kita ketahui jika dibagi oleh x + 2 maka akan bersisa -13 serta apabila dibagi x – 3 sisanya akan menjadi 7Maka dari itu, k-2 = -13 dan k3 = 7Sehingga, kembalikan ke rumus Sisa, menjadisx = mx + n s-2 = -2m + n = -13 s3 = 3m + n = 7Kemudian kita pakai metode eliminasi, caranya-2m + n = -13 3m + n = 7-5m = -20 m = 4Kemudian menggunakan metode substitusi, substitusikan ke persamaan12 + n = 7 n = -5Kemudian kembalikan ke rumus sx = mx + nSehingga diketahui Sisa Polinomial jika dibagi x2 – x – 6 hasil nya 4x – singkat dari soalPolinominal 8x3 – 2x + 5 dibagi dengan x + 2 mempunyai sisa S berikutS = fk = 8x3 – 2x + 5S = f-2 = 8-23 – 2-22 + 5S = -67Teorema FaktorSebuah suku banyak Fx memiliki faktor x – k apabila Fk = 0 sisanya apabila dibagi dengan x – k hasilnya 0Catatan apabila x – k merupakan faktor dari Fx maka k disebut sebagai akar dari FxTipsUntuk mencari akar dari sebuah suku banyak dengan cara Horner, bisa kita gunakan dengan cara mencoba-coba dengan angka dari faktor-faktor konstanta dibagi faktor-faktor koefisien pangkat tertinggi yang akan nantinya akan memberikan sisa = 0. Sebagai contoh Untuk x3 – 2x2 – x + 2 = 0, faktor-faktor konstantanya adalah Β±1, Β±2. Faktor-faktor koefisien pangkat tertinggi adalah Β±1. Sehingga, angka-angka yang perlu untuk dicoba yaitu Β±1 dan Β±2 untuk 4x3 – 2x2 – x + 2 = 0. Faktor-faktor konstantanya Β±1, Β±2, faktor-faktor koefisien pangkat tertinggi Β±1, Β±2, Β±4. Sehingga, angka-angka yang perlu dicoba Β±1, Β±2, Β±1/2, Β±1/4Apabila jumlah koefisien suku banyak = 0, maka pasti salah satu akarnya merupakan x = jumlah koefisien suku di posisi genap = jumlah koefisien suku di posisi ganjil, maka pasti salah satu akarnya merupakan x = – contoh soal di bawah iniTentukan penyelesaian dari x3 – 2x2 – x + 2 = 0?JawabFaktor-faktor dari konstantanya adalah 2, merupakan Β±1 serta Β±2 dan faktor-faktor koefisien pangkat tertingginya, adalah 1, merupakan Β±1, sehingga angka-angka yang perlu dicoba Β±1 dan Β±2Sebab jumlah semua koefisien + konstantanya = 0 1 – 2 – 1 + 2 = 0, maka, pasti x = 1 merupakan salah satu faktornya, sehinggaSehingga, x3 – 2x2 – x + 2 = x – 1x2 – x – 2= x – 1x – 2x + 1x = 1 x = 2 x = –1Maka dari itu, dapat kita ketahui himpunan penyelesaiannya {–1, 1, 2}.Sifat Akar Akar Suku BanyakPada persamaan berderajat 3ax3 + bx2 + cx + d = 0 akan memiliki akar-akar x1, x2, x3Dengan sifat-sifatJumlah 1 akar x1 + x2 + x3 = – b/aJumlah 2 akar + + = c/aHasil kali 3 akar = – d/aPada persamaan berderajat 4ax4 + bx3 + cx2 + dx + e = 0 akan memiliki akar-akar x1, x2, x3, x4Dengan sifat-sifatJumlah 1 akar x1 + x2 + x3 + x4 = – b/aJumlah 2 akar + + + + + = c/aJumlah 3 akar + + = – d/aHasil kali 4 akar = e/aPada persamaan berderajat 5ax5 + bx4 + cx3 + dx + e = 0 akan mempunyai akar-akar x1, x2, x3, x4, x5Dengan sifat-sifatJumlah 1 akar x1 + x2 + x3 + x4 + x5 = – b/aJumlah 2 akar + + + + + + =c/aJumlah 3 akar + + = – d/aHasil kali 4 akar = e/aDari kedua persamaan tersebut, kita bisa menurunkan rumus yang sama untuk persamaan berderajat 6 dan begitu juga seterusnya. Amati pola –b/a, c/a, –d/a , e/a, ….Pembagian IstimewaPerhatikan gambar di bawah ini baik-baikContoh Soal dan PembahasanSoal fx Γ· x – 2 sisanya 24 serta fx Γ· x + 5 sisanya 10. Maka fx tersebut dibagi x2 + 3x – 10 sisanya yaitu…a. x + 34 b. x – 34 c. x + 10 d. 2x + 20 e. 2x – 20JawabRumusnya yaitu Px = Hx . Pembagi + px + qDiketahuifx Γ· x – 2 sisa 24, makafx = Hxx – 2 + 24Kemudian subtitusikan x = 2, sehinggaf2 = H22 – 2 + 2p + q = 2p + q = 24 …. ifx Γ·x + 5 sisa 10, sehingga fx = Hxx + 5 + 10Dengan Subtitusikan x = -5, sehingga f-5 = H-5-5 + 5 + -p + q = -5p + q = 10 …. iiEliminasikan persamaan i serta ii 2p +q =24 -5p +q =10 7p = 14 p =2Dalam mensubtitusikan p = 2 pada 2p + q = 24 22 + q = 24 q = 24 – 4 q = 20Apabila fx dibagi x2 + 3x – 10 makafx = Hx x2 + 3x – 10 + px + q fx = Hx x-2 x + 5 + px + qsisa px + q = 2x + 20Jawaban DSoal banyak x4 – 3x3 – 5x2 + x – 6 dibagi oleh xΒ² – x -2 sisanya sama dengan …a. 16x + 8 b. 16x – 8 c. -8x + 16 d. -8x – 16 e. -8x – 24JawabDiketahi pembaginya yaitu xΒ² – x -2, sehingga xΒ² – x -2= 0 x – 2 x + 1 = 0 x = 2 dan x = -1Ingat rumus Px = Hx + px + q, sehingga sisanya px + q, makax = 2f2 = 2p + q 24 – 323 – 522 + 2 – 6 = 2p + q 16 – 24 – 20 + 2 – 6 = 2p + q -32 = 2p + q … ix = -1f-1 = -p + q -1 – 3-13 – 5-12 + -1 – 6 = -p + q 1 + 4 – 5 – 1 – 6 = -p + q -8 = -p + q …iiEliminasikan persamaan i serta ii, menjadi-32 =2p +q -8 =-p +q -24 =3p p = -8Jika kita substitusikan p = –p + q = -8 -8 + q = -8 q = -16Maka , sisanya adalah = p + q = -8x – 16Jawaban DSoal gx = 2x3 + ax2 + bx + 6 dan hx = x2 + x – 6 merupakan faktor dari gx. Nilai a yang memenuhi yaitu…a. -3 b. -1 c. 1 d. 2 e. 5Jawabx2 + x – 6 = 0 x + 3x – 2 = 0 x = -3 dan x = 2Sebab hx merupakan faktor dari gx, sehinggag-3 = 02x3 + ax2 + bx + 6 = 0 2-33 + a-32 + b-3 + 6 = 0 -54 + 9a – 3b + 6 = 0 9a – 3b = 48 … ig2 = 02x3 + ax2 + bx + 6 = 0 223 + a22 + b2 + 6 = 0 16 + 4a + 2b + 6 = 0 4a + 2b = – 22 2a + b = – 11 … iiEliminasikan persamaan i serta ii9a -3b 48 x1 9a -3b =482a +b =-11 x3 6a +3b =-3315a =15a = 1Jawaban CSoal fx dibagi oleh x2 – 2 dan x2 – 3x masing-masing memiliki sisa 2x + 1 dan 5x + 2 maka fx dibagi oleh x2 – 5x + 6 memiliki sisa…a. 22x – 39 b. 12x + 19 c. 12x – 19 d. -12x + 29 e. -22x + 49JawabMisalnya sisa pembagiannya Sx = px+ q, makafx dibagi oleh xΒ² – 2x ataupun xx -2 β†’ x =2 sisanya 2x + 1, sehingga S2 = 2x + 1 S2 = 22 + 1 S2 = 5 2p + q = 5 … ifx dibagi oleh x2 – 3x ataupun xx – 3 –> x = 3 sisanya 5x + 2, sehingga S3 = 5x + 2 S3 = 53 + 2 S3 = 17 3p + q = 17 … iiEliminasikan i serta ii 2p + q =5 3p +q =17 -p = -12 p = 12Substitusikan p = 12 dalam 2p + q = 5 212 + q = 5 24 + q = 5 q = -19Maka sisanya adalah px + q = 12x – 19Jawaban 2x3 + 5x2 + ax + b Γ· x + 1 sisa 1 serta apabila Γ· x – 2 sisanya 43. Nilai a + b = …a. -4 b. -2 c. 0 d. 2 e. 4JawabDibagi x + 1 sisanya 1Sehingga, pada saatu x = -1, h-1 = 1 2-13 + 5-12 + a-1 + b = 1 -2 + 5 – a + b = 1 -a + b = 1 – 3 -a + b = -2 …iDibagi x – 2 sisanya 43Sehingga pada saat x = 2, h2 = 43 223 + 522 + a2 + b = 43 16 + 20 + 2a + b = 43 2a + b = 43 – 36 2a + b = 7 …. iiEliminasikan i sera ii 2a +b =7 -a +b =-2 3a = 9 a =3Subtitusikan a = 3 ke dalam 2a + b = 7, sehingga menjadi 23 + b = 7 6 + b = 7 b = 1Sehingga, a + b = 3 + 1 = 4Jawaban ESoal satu faktor dari 2xΒ³ -5xΒ² – px =3 merupakan x + 1. Faktor lain dari suku banyak tersebut ialah…a. x – 2 dan x – 3 b. x + 2 dan 2x – 1 c. x + 3 dan x + 2 d. 2x + 1 dan x – 2 e. 2x – 1 dan x – 3JawabYang merupakan faktornya adalah x + 1 –> x = -1f-1 = 0 2-1Β³ – 5-1Β³ – p-1 + 3 = 0 -2 – 5 + p + 3 = 0 p = 4Maka, fx = 2xΒ³ -5xΒ³ – 4x =3= x + 12Γ—2 – 7x + 3 = x + 12x – 1x – 3Sehingga, faktor yang lainnya yaitu 2x – 1 dan juga x – 3.Jawaban ESoal Dua polinomial xΒ³ -4xΒ³ – 5x + m dan x2 -3x – 2 Γ· x + 1 akan memiliki sisa sama, maka nilai 2m + 5 = …a. 17 b. 18 c. 24 d. 27 e. 30JawabMisalnya fx = xΒ³ -4x2 – 5x + m dan x2 -3x – 2Jika Γ·x + 1 –> x = -1 akan mempunyai sisa sama, maka f-1 = g-1 -1Β³ – 4-12 + 5-1 + m = -12 + 3-1 – 2 -1 -4 – 5 + m = 1 – 3 – 2 -10 + m = -4 m = -4 + 10 m = 6Sehingga, nilai dari 2m + 5 = 26 + 5 = 17Jawaban ASoal fx Γ· x – 1 sisa 3, sementara Γ· x – 2 sisa 4. Apabila dibagi dengan x2 -3x + 2 maka sisanya adalah…a. –x – 2 b. x + 2 c. x – 2 d. 2x + 1 e. 4x – 1Jawabfx dibagi x – 1 sisanya 3 β†’ f1 = 3fx dibagi x – 2 sisanya 4 β†’ f1 = 4Misalkan sisanya = ax + b, maka x2 -3x + 2 = x – 2x – 1Maka sisanya ialah f1 = 3 a + b = 3 … if2 = 4 2a + b = 4 … iiEliminasikan i serta ii 2a + b =4 a +b = 3 a =1Dalam Subtitusi a = 1 pada a + b = 3 1 + b = 3 b = 2Sehingg diketahui sisanya adalah ax + b = x + 2Jawaban BSoal akar-akar real dari x4 – 3x3 – 3x2 + 7x + 6 = 0 adalah …a. 2 b. 3 c. 4 d. 5 e. 6Jawabx4 -3Γ—3 -3Γ—2 +7x +6 =0 1 +x3 -4Γ—2 +x +6 =0 x +1x+1- x2 – 5x +6 + 0x +1x +1x -2x -3 = 0 x = -1, x = 2, dan x = 3Sehingga banyak akar- akarnya terdapat 3 BSoal x3 -4x + px +6 dan z2 +3x -2 dibagi x + 1 mempunyai sisa yang sama maka nilai p adalah …a. 7 b. 5 c. 3 d. -5 e. -7JawabMisalnya fx = x3 -4Γ—2 + px +6 serta x2 +3x -2Kemudian dibagai x + 1 maka, x = -1 f-1 = g-1-13 – 4-12 + p-1 + 6 = -12 + 3 -1 -2 -1 – 4 – p + 6 = 1 -3 – 2 1 – p = -4 p = 5Jawaban BDemikianlah ulasan singkat terkait Polinomial yang dapat kami sampaikan. Semoga ulasan di atas dapat kalian jadikan sebagai bahan belajar kalian.
Gadisdari suku yang beberapa diantaranya terpencil ini memang cantik alami dan tanpa make up atau pun operasi plastik. Mereka semakin terlihat cantik ketika memakai pakaian adat dari budayanya. Berikut ini merupakan suku-suku yang banyak terdapat gadis-gadis cantiknya dengan ke cantikan yang alami. 1. Suku Chukchi, Siberia ο»ΏMAMahasiswa/Alumni Universitas Pendidikan Ganesha07 Mei 2022 0421Halo Anis, kakak bantu jawab ya Jawabannya adalah Konsep Suku banyak adalah suatu bentuk matematika yang merupakan penjumlahan atau pengurangan dari satu suku atau lebih dengan pangkat variabelnya harus bilangan bulat dan tidak negatif. Suku banyak disebut juga polinomial. Catatan 1/bÑ¢œ = bҁ»Ñ¢œ Γ’Λ†Ε‘a = a^1/2 Jawab -> salah karena ada yang berpangkat negatif. b. x³+4xΓ‚Β²Γ’β‚¬β€œx+2 -> benar karena semua pangkat variabelnya bilangan bulat dan tidak negatif c. xҁ´+xΓ‚Β²Γ’β‚¬β€œ2Γ’Λ†Ε‘xΓ’β‚¬β€œ5 = xҁ´+xΓ‚Β²Γ’β‚¬β€œ2x^1/2Γ’β‚¬β€œ5 -> salah karena ada yang tidak berpangkat bulat 1/2 = xҁ´+2xΓ‚Β²Γ’β‚¬β€œ1xҁ»Â¹ +5 -> salah karena ada yang berpangkat negatif. e. xҁ´+3x²+Γ’Λ†Ε‘2xΓ’β‚¬β€œ1 = xҁ´+3x²+2x^1/2 Γ’β‚¬β€œ1 -> salah karena ada yang tidak berpangkat bulat 1/2 Jadi yang merupakan suku banyak adalah x³+4xΓ‚Β²Γ’β‚¬β€œx+2 jawabannya adalah Semoga membantu dik Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan! Bentukumum persamaan suku banyak: f (x) = a n x n + a n - 1 x n - 1 + + a 2 x 2 + a 1 x 1 + a 0. Pembagian suku banyak f (x) oleh (x - k) menghasilkan hasil bagi H (x) dan sisa S (x). Secara matematis, persamaan yang sesuai dengan pernyataan tersebut dinyatakan sesuai persamaan berikut. Sebelum mengenal lebih jauh mengenai polinomial atau yang biasa disebut suku banyak, terlebih dahulu kita perlu memahami tentang istilah persamaan kuadrat. Ini boleh dibilang merupakan dasar dari suku banyak tersebut. Lalu, bagaimana jika pangkatnya lebih dari 2 dan bagaimana pula cara menentukan suku-suku persamaannya? Sistem persamaan berpangkat lebih dari 2 inilah yang disebut dengan polinomial. Polinomial atau suku banyak sendiri merupakan pernyataan aljabar yang berbentuk. Bentuk umum dari ini adalah sebagai berikut anxn + an-1xn-1 + an-2xn-2 + ..+a1x1 + a0 dengan an β‰  0 Keterangan x variabel, n derajat, an,an-1, an-2,….a1 koefisien, a0 konstanta, anxn suku utama Sementara itu, derajat polinomial merupakan pangkat tertinggi dari variabelnya. Penamaan polinomial ini disesuaikan dengan derajatnya. Dia yang berderajat satu bernama monomial; yang berderajat dua bernama binomial; dan yang berderajat tiga bernama trinomial; dan seterusnya. Nilai Polinomial Nilai suatu polinomial Px pada x = a dapat ditentukan dengan cara mensubsitusikan nilai x = a ke dalam bentuk polinomial tersebut. Nilai polinomial Px untuk x = a ditulis menjadi Pa. Disamping itu, ada dua cara dalam menentukan nilai polinomial yaitu dengan metode substitusi dan dengan metode sintetik horner. Baca juga Pernyataan dan Kalimat Terbuka Dalam Matematika Metode Substitusi Cara pertama yang dilakukan untuk mencari nilai polinomial adalah dengan metode substitusi. Misalnya, suku banyak fx = ax3 + bx2 + cx + d. Jika ingin mencari nilai fx untuk x = k, maka nilai x pada fungsi banyak diganti k, sehingga didapat nilai suku banyak fx untuk x = k adalah fk = ak3 + bk2 + ck + d. Agar lebih memahami tentang cara substitusi ini perhatikan contoh soal berikut ini Tentukan nilai suku banyak berikut ini untuk x yang diberikan. Fx = 2x3 + 4x2 – 18 untuk x = 5 Penyelesaian fx = 2x3 + 4x2 – 18 f3 = 2 53 + 4 52 – 18 f3 = 2 125 + 4 25 – 18 f3 = 250 + 100 – 18 f3 = 332 Jadi nilai suku banyak fx untuk x = 5 adalah 332 Cara Sintetik Horner Cara lain dalam menentukan nilai polinomial adalah dengan menggunakan cara sintetik atau dikenal juga dengan metode horner. Misalkan diketahui polinomial yang ada fx = ax3 bx2 + cx + d. Akan ditentukan nilai polinomial saat x = h atau fh. Contoh soal diketahui polinomial fx = 2x4 – x3 + 3x2 + x – 4 tentukan f 4, f -2 Penyelesaian koefisien pada fx = 2x4 – x3 + 3x2 + x – 4 adalah 2, -1, 3, 1, dan -4 maka, Fungsi Polinomial Fungsi polinomial adalah fungsi dalam aljabar yang memuat banyak suku. Misalnya 3x2 – 3x4 – 5 + 2x + 2x2 – x 5x2 – 3x4 – 5 + x Keterangan an β‰  0, a0 adalah suku tetap, n adalah pangkat tertinggi atau derajat polinomial, n berupa bilangan cacah. Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. Jikakita menemukan sel berikut kita lihat di sini ada option a sampai n a bentuk berikut yang merupakan suku banyak adalah na sebelumnya dikatakan suku banyak itu jika bentuknya bukan pecahan berarti kita lihat disini C Itu bukan suku banyak D juga bukan suku banyak karena di sini ada bentuk pecahan nya sekarang kita cek di B sama-sama Ana suku banyak itu pangkatnya itu juga nggak boleh terbentuknya pecahan Nah di sini kan ada 7 x ^ 5 ya akar dari 7 pangkat 55 nah Berarti x 1 ^ 5/2 ini Kelas 11 SMAPolinomialPengetahuan tentang Suku BanyakPengetahuan tentang Suku BanyakPolinomialALJABARMatematikaRekomendasi video solusi lainnya0400Berikut ini yang merupakan suku banyak adalah . . . .0404Jika 5x+3/x+31-2x ekuivalen A/x+3 + B/1-2x, n...0020Polinom 4+3t-2t^2+t^3+10t^4-2t^3+2t^3 memiliki koefisien ...Teks videosoal ini kita pernah pertama harus tahu bentuk umum suku banyak kertas syarat-syarat tanya teman-teman bisa perhatikan di kotak yang warna biru tua ini jadi A min 1 A 2 itu adalah koefisien dimana koefisien itu berarti suatu bilangan yang menempel pada variabel x pangkat n x pangkat n min 1 dan x ^ 10 nya disebut suku tetap atau konstanta sedangkan suku banyak fungsi trigono ya contohnya sinus cosinus tangen sekan kosokan dan lain sebagainya cara untuk nomor kitaNomor akan ada x ^ 3 1 x kuadrat dengan koefisien minus 2 dan 1 itu sebagai konstanta bulat semua dan pangkat 2. Nah kan itu adalah suku banyak sekarang nomor B kita perhatikan ada x ^ 30 x ^ 1 dengan koefisien minus 1 dan X dengan koefisien 30 ^ 21 dan pangkat 1 nah variabel tidak bolehmenemukan CX yang suku banyak 2 x ^ 5 di sini kalau di sini ada fungsi trigonometri karena ada fungsi trigono seperti ini kita bisa mengatakan membaca sebagai suku banyak karena tadi sudah bukan suku banyak 4 x ^ 4 4 x ^ 3 + 16 x kuadrat dibagi x 16 x dan kitaGabungkan menjadi 4 x ^ 3 + 8 x sama teman nah nomor 4 x pangkat 3 dan 18 pangkat 18 x masuknya kita tidak menemukan pangkat pecahan atau negatif juga itu adalah suku banyak X ada yang ada yang ada di nomor itu bertindak sebagai ada yang paling efisien dan ada yang konstanta. Nah yang koefisien kan cosinus 30 derajat dan koefisien x ^ 5 + 60X minus 60 derajat yang di sini karena ada minus X tangen 60 derajat kerusakan 0 derajat dan sinus bisa disimpulkan bahwa adalah suku banyak untuk soal ini bukan suku banyak adalahSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul 55t5XDJ.
  • lofk6rztnx.pages.dev/27
  • lofk6rztnx.pages.dev/374
  • lofk6rztnx.pages.dev/234
  • lofk6rztnx.pages.dev/110
  • lofk6rztnx.pages.dev/260
  • lofk6rztnx.pages.dev/8
  • lofk6rztnx.pages.dev/348
  • lofk6rztnx.pages.dev/128
  • berikut ini yang merupakan suku banyak adalah